Google soc
Author: s | 2025-04-25
Google Cloud’s SOC 2 report provides assurance to investors and clients that Google Cloud infrastructure had controls in place to meet the SOC 2 criteria and those controls operated effectively over time. Leveraging the GCP SOC, many of our clients receive annual Type II SOC 2 reports where Google was responsible for providing SOC 2 compliant The American Institute of Certified Public Accountants (AICPA) SOC 2 (Service Organization Controls) and SOC 3 audit framework defines Trust Services Criteria for security, availability, processing integrity, privacy and confidentiality. Google has both SOC 2 and SOC 3 reports for Google Cloud Platform and Google Workspace.
SOC Secure - Apps on Google Play
Polymer-based gelators formed transparent and stable gels that do not transform into crystals. It is important to introduce a gelation-driving compound to highly miscible and flexible polymers such as polysiloxane, polyether and polycarbonate. Considering that polymer-based gelators are physiologically inert and safe, they are most likely useful as scaffolds for tissue engineering. In the future, by utilizing the transparency and safety of gels produced using polymer-based gelators, a variety of industrial applications are expected, such as cosmetics and an ink-thickener for an inkjet printer, among others. ReferencesTerech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3159 (1997).Article CAS Google Scholar van Esch, J. H. & Feringa, B. L. New functional materials based on self-assembling organogels: from serendipity towards design. Angew. Chem. Int. Ed. 39, 2263–2266 (2000).3.0.CO;2-V" data-track-item_id="10.1002/1521-3773(20000703)39:133.0.CO;2-V" data-track-value="article reference" data-track-action="article reference" href=" aria-label="Article reference 2" data-doi="10.1002/1521-3773(20000703)39:133.0.CO;2-V">Article CAS Google Scholar Estroff, L. A. & Hamilton, A. D. Water gelation by small organic molecules. Chem. Rev. 104, 1201–1217 (2004).Article CAS Google Scholar Suzuki, M. & Hanabusa, K. L-Lysine-based low-molecular-weight gelators. Chem. Soc. Rev. 38, 967–975 (2009).Article CAS Google Scholar Suzuki, M. & Hanabusa, K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem. Soc. Rev. 39, 455–463 (2010).Article CAS Google Scholar John, G., Shankar, B. V., Jadhav, S. R. & Vemula, P. K. Biorefinery: a design tool for molecular gelators. Langmuir 26, 17843–17851 (2010).Article CAS Google Scholar Svobodová, H., Noponen, V., Kolehmainen, E. & Sievänen, E. Recent advances in steroidal supramolecular gels. RSC Adv. 2, 4985–5007 (2012).Article Google Scholar Tam, A. Y.-Y. & Yam, V. W.-W. Recent advances in metallogels. Chem. Soc. Rev. 42, 1540–1567 (2013).Article CAS Google Scholar Raeburn, J., Cardoso, A. Z. & Adams, D. J. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem. Soc. Rev. 42, 5143–5156 (2013).Article CAS Google Scholar Yu, G., Yan, X., Han, C. & Huang, F. Characterization of supramolecular gels. Chem. Soc. Rev. 42, 6697–6722 (2013).Article CAS Google Scholar Segarra-Maset, M. D., Nebot, V. J., Miravet, J. F. & Escuder, B. Control of molecular gelation by chemical stimuli. Chem. Soc. Rev. 42, 7086–7098 (2013).Article CAS Google Scholar Tachibana, T., Mori, T. & Hori, K. Chiral mesophases of 12-hydroxyoctadecanoic acid in jelly and in the solid state. I. a new type of lyotropic mesophase in jelly with organic solvents. Bull. Chem. Soc. Jpn 53, 1714–1719 (1980).Article CAS Google Scholar Yamamoto, S. Sorbitol derivatives. III. Organogel formation by benzylidenesorbitol. J. Chem. Soc. Jpn. Ind. Chem. Soc. 46, 779–781 (1943) Chem. Abstr. 46, 7047i (1952). Google Scholar Hanabusa, K., Hiratsuka, K. & Shirai, H. Easy preparation and useful character of organogel electrolytes based on Google Cloud’s SOC 2 report provides assurance to investors and clients that Google Cloud infrastructure had controls in place to meet the SOC 2 criteria and those controls operated effectively over time. Leveraging the GCP SOC, many of our clients receive annual Type II SOC 2 reports where Google was responsible for providing SOC 2 compliant Lithium intercalation into lix MO y host materials (M = Ni, Mn). J Electrochem Soc 147:1322–1331. Article Google Scholar Tavassol H, Chan MKY, Catarello MG et al (2013) Surface coverage and SEI induced electrochemical surface stress changes during li deposition in a model system for li-ion battery anodes. J Electrochem Soc 160:A888–A896. Article Google Scholar Wang JW, He Y, Fan F et al (2013) Two-phase electrochemical Lithiation in amorphous silicon. Nano Lett 13:709–715. Article Google Scholar Paz-Garcia JM, Taiwo OO, Tudisco E et al (2016) 4D analysis of the microstructural evolution of Si-based electrodes during lithiation: time-lapse X-ray imaging and digital volume correlation. J Power Sour 320:196–203. Article Google Scholar Nation L, Li J, James C et al (2017) In situ stress measurements during electrochemical cycling of lithium-rich cathodes. J Power Sour 364:383–391. Article Google Scholar Sheth J, Karan NK, Abraham DP et al (2016) In situ stress evolution in li 1+xMn 2O 4Thin films during electrochemical cycling in li-ion cells. J Electrochem Soc 163:A2524–A2530. Article Google Scholar Cho H-M, Chen MV, MacRae AC, Meng YS (2015) Effect of surface modification on Nano-structured LiNi0.5Mn1.5O4 spinel materials. ACS Appl Mater Interfaces 7:16231–16239. Article Google Scholar Ho C (1980) Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350. Article Google Scholar Xie J, Kohno K, Matsumura T et al (2008) Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition. Electrochim Acta 54:376–381. Article Google Scholar Goonetilleke PC, Zheng JP, Roy D (2009) Effects of surface-film formation on the electrochemical characteristics of LiMn2O4 cathodes of lithium ion batteries. J Electrochem Soc 156:A709–A719. Article Google Scholar Zheng J, Sulyma C, Goia C et al (2012) Electrochemical features of ball-milled lithium manganate spinel for rapid-charge cathodes of lithium ion batteries. J SolidComments
Polymer-based gelators formed transparent and stable gels that do not transform into crystals. It is important to introduce a gelation-driving compound to highly miscible and flexible polymers such as polysiloxane, polyether and polycarbonate. Considering that polymer-based gelators are physiologically inert and safe, they are most likely useful as scaffolds for tissue engineering. In the future, by utilizing the transparency and safety of gels produced using polymer-based gelators, a variety of industrial applications are expected, such as cosmetics and an ink-thickener for an inkjet printer, among others. ReferencesTerech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3159 (1997).Article CAS Google Scholar van Esch, J. H. & Feringa, B. L. New functional materials based on self-assembling organogels: from serendipity towards design. Angew. Chem. Int. Ed. 39, 2263–2266 (2000).3.0.CO;2-V" data-track-item_id="10.1002/1521-3773(20000703)39:133.0.CO;2-V" data-track-value="article reference" data-track-action="article reference" href=" aria-label="Article reference 2" data-doi="10.1002/1521-3773(20000703)39:133.0.CO;2-V">Article CAS Google Scholar Estroff, L. A. & Hamilton, A. D. Water gelation by small organic molecules. Chem. Rev. 104, 1201–1217 (2004).Article CAS Google Scholar Suzuki, M. & Hanabusa, K. L-Lysine-based low-molecular-weight gelators. Chem. Soc. Rev. 38, 967–975 (2009).Article CAS Google Scholar Suzuki, M. & Hanabusa, K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem. Soc. Rev. 39, 455–463 (2010).Article CAS Google Scholar John, G., Shankar, B. V., Jadhav, S. R. & Vemula, P. K. Biorefinery: a design tool for molecular gelators. Langmuir 26, 17843–17851 (2010).Article CAS Google Scholar Svobodová, H., Noponen, V., Kolehmainen, E. & Sievänen, E. Recent advances in steroidal supramolecular gels. RSC Adv. 2, 4985–5007 (2012).Article Google Scholar Tam, A. Y.-Y. & Yam, V. W.-W. Recent advances in metallogels. Chem. Soc. Rev. 42, 1540–1567 (2013).Article CAS Google Scholar Raeburn, J., Cardoso, A. Z. & Adams, D. J. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem. Soc. Rev. 42, 5143–5156 (2013).Article CAS Google Scholar Yu, G., Yan, X., Han, C. & Huang, F. Characterization of supramolecular gels. Chem. Soc. Rev. 42, 6697–6722 (2013).Article CAS Google Scholar Segarra-Maset, M. D., Nebot, V. J., Miravet, J. F. & Escuder, B. Control of molecular gelation by chemical stimuli. Chem. Soc. Rev. 42, 7086–7098 (2013).Article CAS Google Scholar Tachibana, T., Mori, T. & Hori, K. Chiral mesophases of 12-hydroxyoctadecanoic acid in jelly and in the solid state. I. a new type of lyotropic mesophase in jelly with organic solvents. Bull. Chem. Soc. Jpn 53, 1714–1719 (1980).Article CAS Google Scholar Yamamoto, S. Sorbitol derivatives. III. Organogel formation by benzylidenesorbitol. J. Chem. Soc. Jpn. Ind. Chem. Soc. 46, 779–781 (1943) Chem. Abstr. 46, 7047i (1952). Google Scholar Hanabusa, K., Hiratsuka, K. & Shirai, H. Easy preparation and useful character of organogel electrolytes based on
2025-04-13Lithium intercalation into lix MO y host materials (M = Ni, Mn). J Electrochem Soc 147:1322–1331. Article Google Scholar Tavassol H, Chan MKY, Catarello MG et al (2013) Surface coverage and SEI induced electrochemical surface stress changes during li deposition in a model system for li-ion battery anodes. J Electrochem Soc 160:A888–A896. Article Google Scholar Wang JW, He Y, Fan F et al (2013) Two-phase electrochemical Lithiation in amorphous silicon. Nano Lett 13:709–715. Article Google Scholar Paz-Garcia JM, Taiwo OO, Tudisco E et al (2016) 4D analysis of the microstructural evolution of Si-based electrodes during lithiation: time-lapse X-ray imaging and digital volume correlation. J Power Sour 320:196–203. Article Google Scholar Nation L, Li J, James C et al (2017) In situ stress measurements during electrochemical cycling of lithium-rich cathodes. J Power Sour 364:383–391. Article Google Scholar Sheth J, Karan NK, Abraham DP et al (2016) In situ stress evolution in li 1+xMn 2O 4Thin films during electrochemical cycling in li-ion cells. J Electrochem Soc 163:A2524–A2530. Article Google Scholar Cho H-M, Chen MV, MacRae AC, Meng YS (2015) Effect of surface modification on Nano-structured LiNi0.5Mn1.5O4 spinel materials. ACS Appl Mater Interfaces 7:16231–16239. Article Google Scholar Ho C (1980) Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350. Article Google Scholar Xie J, Kohno K, Matsumura T et al (2008) Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition. Electrochim Acta 54:376–381. Article Google Scholar Goonetilleke PC, Zheng JP, Roy D (2009) Effects of surface-film formation on the electrochemical characteristics of LiMn2O4 cathodes of lithium ion batteries. J Electrochem Soc 156:A709–A719. Article Google Scholar Zheng J, Sulyma C, Goia C et al (2012) Electrochemical features of ball-milled lithium manganate spinel for rapid-charge cathodes of lithium ion batteries. J Solid
2025-04-17Fritts, C. Brunini, Astrophys. J. 809(1), 36 (2015). Pokorný, P.G. Brown, Astron. Astrophys. 592, A150 (2016). ADS Google Scholar R.C. Blaauw, M.D. Campbell-Brown, R.J. Weryk, Mon. Not. R. Astron. Soc. 414(4), 3322 (2011). ADS Google Scholar E. Grun, H.A. Zook, H. Fechtig, R.H. Giese, Icarus 62(2), 244 (1985). ADS Google Scholar V. Porubčan, L. Kornoš, I.P. Williams, Contributions Astron. Obs. Skalnate Pleso 36, 103 (2006)ADS Google Scholar D.J. Asher, S.V.M. Clube, D.I. Steel, Mon. Not. R. Astron. Soc. 264, 93 (1993). ADS Google Scholar P. Spurný, J. Borovička, H. Mucke, J. Svoreň, Astron. Astrophys. 605, A68 (2017). ADS Google Scholar P. Jenniskens, J. Vaubaillon, Astron. J. 139, 1822 (2010). ADS Google Scholar T.J. Jopek, Z. Kaňuchová, Planet. Space Sci. 143, 3 (2017). ADS Google Scholar I.P. Williams, T.J. Jopek, R. Rudawska, J. Tóth, L. Kornoš, Minor Meteor Showers and the Sporadic Background (Cambridge University Press, Cambridge, 2019), p. 210 Google Scholar R.B. Southworth, G.S. Hawkins, Smithsonian Contributions Astrophy. 7, 261 (1963)ADS Google Scholar J.D. Drummond, Icarus 45(3), 545 (1981). ADS Google Scholar G.B. Valsecchi, T.J. Jopek, C. Froeschle, Mon. Not. R. Astron. Soc. 304(4), 743 (1999). ADS Google Scholar T.J. Jopek, R. Rudawska, P. Bartczak, Earth Moon Planets 102(1–4), 73 (2008). ADS Google Scholar A.V. Moorhead, Mon. Not. R. Astron. Soc. 455(4), 4329 (2016). ADS Google Scholar L. Neslušan, M. Hajduková, Astron. Astrophys. 598, A40 (2017). ADS Google Scholar R. Rudawska, P. Matlovič, J. Tóth, L. Kornoš, Planet. Space Sci. 118, 38 (2015). ADS Google Scholar P. Brown, R.J. Weryk, D.K. Wong, J. Jones, Icarus 195(1), 317 (2008). ADS Google Scholar J. Vaubaillon, F. Colas, L. Jorda, Astron. Astrophys. 439(2), 761 (2005). ADS Google Scholar G.O. Ryabova, Solar Syst. Res. 47(3), 219 (2013). ADS Google Scholar D.P. Galligan, W.J. Baggaley, Mon. Not. R. Astron. Soc. 359(2), 551 (2005). ADS Google Scholar A. Bischoff, J.A. Barrat, K. Bauer, C. Burkhardt, H. Busemann, S. Ebert, M. Gonsior, J. Hakenmüller, J. Haloda, D. Harries, Meteorit. Planet. Sci. 52(8), 1683 (2017). ADS Google Scholar J. Jones, P. Brown, Mon. Not. R. Astron. Soc. 265, 524 (1993). ADS Google Scholar D. Nesvorný, P. Jenniskens, H.F. Levison, W.F. Bottke, D. Vokrouhlický, M. Gounelle, Astrophys. J. 713(2), 816 (2010). ADS Google Scholar P. Pokorný, D. Vokrouhlický, D. Nesvorný, M. Campbell-Brown, P. Brown, Astrophys. J. 789(1), 25 (2014). ADS Google Scholar M.D. Campbell-Brown, Icarus 196(1), 144 (2008). ADS Google Scholar N. McBride, J.A.M. McDonnell, Planet. Space Sci. 47(8–9), 1005 (1999). ADS Google Scholar A.V. Moorhead, P.G. Brown, M.D. Campbell-Brown, D. Heynen, W.J. Cooke, Planet. Space Sci. 143, 209 (2017). ADS Google Scholar E. Grun, H.A. Zook, M. Baguhl, A. Balogh, S.J. Bame, H. Fechtig, R. Forsyth, M.S. Hanner, M. Horanyi, J. Kissel, Nature 362(6419), 428 (1993). ADS Google
2025-04-01